
Anchoring of a nematic liquid crystal induced by surface grooves: A numerical study
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To examine the anchoring energy of a surface with one-dimensional grooves of sinusoidal shape, we carry
out numerical calculation of the Frank elastic energy of a nematic cell composed of such a grooved surface and
a flat surface. We evaluate the anchoring energy of the grooved surface by carefully eliminating the contribu-
tion from a uniform twist deformation in the bulk. When qA�0.2, with q and A being the wave number and
the amplitude of the surface groove, we find that the azimuthal-angle dependence of the calculated anchoring
energy agrees perfectly with our previous analytical result under the assumption of qA�1 �Fukuda et al., Phys.
Rev. Lett. 98, 187803 �2007�; 99, 139902�E� �2007��. Even when qA�0.6 or 1, we observe an unexpectedly
good agreement between the calculated and the analytical anchoring energies, indicating the wide applicability
of the analytical anchoring energy in spite of the assumption of qA�1 in its derivation.
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Surface anchoring �1,2� is one of the most important prop-
erties of liquid crystals, mainly because of its relevance in
practical applications such as liquid crystal displays. Re-
cently, there have been many experimental attempts �3–6� to
achieve some desirable anchoring properties by surfaces tai-
lored with microscopic grooves or geometrical patterns.
Those studies have been attracting attention because they
propose novel methods of preparing anchoring surfaces dif-
ferent from conventional techniques such as surface rubbing.

Theoretical studies to elucidate the anchoring properties
of such microscopically grooved surfaces can date back to
the well-known pioneering study of Berreman �7�. In our
recent studies �8–10�, however, we revealed that Berreman’s
study is insufficient in that it was based on an invalid as-
sumption of no azimuthal director distortions and did not
incorporate the effect of surfacelike elasticity. We gave a
rigorous analytic formula of azimuthal anchoring energy of a
nematic liquid crystal for surfaces with one-dimensional par-
allel grooves �8,9�, or ones with arbitrary patterns �10�. How-
ever, our analytic argument, as well as Berreman’s original
one, is based on an assumption that the surface slope is small
enough; otherwise the nonlinear nature of the Frank elastic
energy does not allow one to carry out purely analytic argu-
ment. Therefore numerical studies will be inevitable to un-
derstand the anchoring properties of grooved surfaces with
relatively large slopes. Although there have been several nu-
merical attempts �11–13� to investigate how a nematic liquid
crystal behaves in the vicinity of a grooved surface, none of
them aimed at the evaluation of the anchoring energies of
such surfaces. The purpose of the present study is to perform
numerical calculations to evaluate the anchoring energy of
one-dimensionally grooved surfaces and to find out how
much our previous analytical argument is applicable.

The free energy density of a nematic liquid crystal is
given by the Frank elastic energy density that is written in
terms of the director n ��n�=1� as �1,14,15�

fFrank�n,�n� =
1

2
�K1�� · n�2 + K2�n · � � n�2

+ K3�n � � � n�2

− Ks � · �n � · n + n � � � n�� , �1�

where K1, K2, and K3 are the bulk elastic constants associ-
ated with splay, twist, and bend deformations, respectively.
The last term in Eq. �1� is referred to as a surfacelike elastic
term because it is converted to a surface integral. We have
introduced Ks	K2+K24, where K24 is the saddle-splay elas-
tic constant �14–16�. Another surfacelike term involving K13
is not considered here �17�.

We consider a surface with one-dimensional �1D� parallel
grooves along the y direction and assume uniformity along
this direction �� /�y=0�. The height of the surface with re-
spect to a reference plane, z=0, is assumed to be given by a
sinusoidal function h�x�=A sin qx. Here q and A characterize
the pitch and the amplitude of the surface grooves, respec-
tively. At this lower surface, we assume that the director n is
always tangential to the surface and no preferred direction is
present. This boundary condition is simply written as
n ·�=0, with � being the surface normal. This assumption is
exactly the same as that employed in our previous analytic
studies �8,9�.

We also introduce an upper plane surface, z=Lz, where we
fix the director as n= �cos � , sin � ,0�. We calculate the total
free energy of the system for various � to examine the azi-
muthal angle dependence of the anchoring energy. We note
that due to the treatments above, we do not have surface free
energies for the upper and lower surfaces, and thus the total
free energy of the system is given solely by the Frank elastic
energy, Eq. �1�.

In our numerical system, we assume a periodic boundary
condition along the x direction, so that the director profile
satisfies n�x ,z�=n�x+mLx ,z�, with m being an arbitrary in-
teger. The period Lx must conform to the periodicity of the*fukuda.jun-ichi@aist.go.jp
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surface, and thus we set Lx=2� /q. The area of our numerical
system in the �x ,z� space is described by 0�x�Lx and
h�x��z�Lz.

After introducing a variable ��x ,z� satisfying
z=�+ �1−� /Lz�h�x�, our system is mapped onto a rectangle
in the �x ,�� space: 0�x�Lx and 0���Lz. The total free
energy per unit area of the surface is then given by

F =
1

Lx



0

Lx

dx

0

Lz

d�
�z

��
fFrank�n,�xn�x,��,��n�x,��� . �2�

We discretize the rectangle in the �x ,�� space by
N� �N+1� grid points with equal grid spacings. In the
present calculations, we choose N=32. The values
of the director n are assigned at each grid point as
ni,k=n�x= i	x ,�=k	��, with 	x	Lx /N, 	�	Lz /N,
0� i�N, and 0�k�N. The details of the discretization of
Eq. �2� will be given elsewhere. We merely mention here that
F is expressed as the sum of the contributions from each cell
�i	x�x� �i+1�	x, k	���� �k+1�	��, in which fFrank is a
function of ni,k, ni+1,k, ni,k+1, and ni+1,k+1. We let the system
relax from an initial condition under the fixed boundary con-
dition at the upper surface �ni,N= �cos � , sin � ,0��, and the
tangential boundary condition at the lower surface �ni,0 ·�i
=0, where �i is the surface normal at x= i	x�. As the initial
condition, for 0° ���90° we choose ni,k
= �cos � , sin � ,0� for every i and k, and otherwise ��

90° � we take the equilibrium director profile of �=87.5°.
We employ �n /�t=−�I−nn��F /�n �1� as the relaxation
equation with an explicit scheme for the time evolution. Here
I is a unit tensor, and the right-hand side guarantees the
constraint of n being a unit vector. The time t is rescaled so
that the rotational viscosity does not appear explicitly.

We choose the material parameters K1 /K3=0.7, K2 /K3
=0.5, and Ks /K3=0.6 or 1. The former two conform to the
inequality K3�K1�K2 fulfilled by most of the rodlike nem-
atic liquid crystals �1�. Ks /K3=0.6 is in agreement with the
relation K24= �K1−K2� /2 derived by Nehring and Saupe
�15,16�, and Ks /K3=1 is the largest value allowed in the
inequality K24�K1 or K2 guaranteeing the positive definite-
ness of the Frank elastic energy �15,18�. As geometrical
parameters, we choose Lz=Lx or Lx /2 �see below� and
qA=� /160��0.0196�, � /16��0.196�, 3� /16��0.589�,
and 1.

Before presenting our numerical results, we recall that the
anchoring energy per unit area of one-dimensional �1D� par-
allel grooves, derived analytically for qA�1, reads
fa���= �1 /4�K3q3A2Fa���, where �9�

Fa��� =
sin4 �

g1��� �1 +
Ks

K3
cot2 �

��2 −
Ks

K3

g1���g2��� − cos2 �

sin2 �

� . �3�

Here we have defined gi���= �cos2 �+ �K3 /Ki�sin2 ��1/2

�i=1,2�. We note that in the derivation of Eq. �3�, we have
assumed infinite cell thickness �Lz=
�, which does not allow
twist deformation in the bulk �however small it is, finite uni-

form twist in the bulk results in infinite twist elastic energy�.
In our numerical calculations, however, we deal with a cell
of finite thickness, in which twist deformation is present in
the bulk. Analytic evaluation of the total elastic energy �an-
choring energy+twist energy in the bulk� along the line of
Ref. �9� is highly complicated.

To eliminate the effect of twist deformation and extract
the information on the anchoring energy from the total free
energy, we consider a simplified model: a nematic cell with
thickness Lz sandwiched by two parallel flat surfaces; at the
upper surface the director is fixed to n= �cos � , sin � ,0�, and
the lower surface assumes planar alignment whose
anchoring energy per unit area is written as f̃a(��0�), where

f̃a is now an unknown function of ��0�. The director n in this
cell then depends only on z and is written as
n�z�= �cos ��z� , sin ��z� ,0�, with ��Lz�=�. As the twist en-
ergy is minimized when d��z� /dz=const= ��−��0�� /Lz, the
total free energy of the cell per unit area is given by

F = f̃a„��0�… +
K2

2



0

Lz

dz�d�

dz

2

= f̃a„��0�… +
K2�� − ��0��2

2Lz
.

�4�

For the determination of ��0�, we calculate the azimuth of n,
i.e., �n	arctan�ny /nx�, at all the grid points in z
Lz /2. A
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FIG. 1. �Color online� Calculated anchoring energy F̃a as a
function ��0� �in degrees� in the case of �a� qA=� /160�0.0196
�1 and �b� qA=� /16�0.196. The symbols � and � are the re-
sults for Ks /K3=0.6 and Ks /K3=1, respectively. The upper and
lower curves are Fa for Ks /K3=0.6 and Ks /K3=1, respectively.

FUKUDA, YONEYA, AND YOKOYAMA PHYSICAL REVIEW E 77, 030701�R� �2008�

RAPID COMMUNICATIONS

030701-2



least-squares fit of �n’s to ��z�=��0�+ ��−��0��z /Lz

determines ��0�. Now that ��0� is known and F has been

calculated numerically, the “numerical” anchoring energy f̃a
can be determined as a function of ��0� from Eq. �4�. We

introduce a rescaled numerical anchoring energy F̃a

= f̃a / � 1
4K3q3A2�, which can be directly compared with a res-

caled analytic anchoring energy Fa in Eq. �3�. We notice here
that Fa is independent of qA, and therefore in the following
figures one will find the same functional form of Fa as a
function of ��0�.

In Fig. 1, we plot the rescaled numerical anchoring energy

F̃a as a function of the azimuthal angle ��0� for
qA=� /160 and � /16, respectively. In these calculations we

have chosen Lz=Lx. We find an excellent agreement of F̃a
with the anchoring energy Fa calculated analytically for
qA�1, which manifests the validity of our numerical treat-
ments and of our analytical formula, Eq. �3�. Note the re-
markable agreement in Fig. 1�b�, or in the case of
qA=� /16�0.2, for which qA�1 cannot be postulated. We
also notice that in the case of qA=� /160, twist deformation
in the bulk is almost negligible and ��0� and ��=��Lz�� are
almost equal. It is therefore natural that the total free energy
F is almost equal to the �dimensional� anchoring energy

1
4K3q3A2F̃a. On the other hand, for qA=� /16, twist defor-
mation is indeed present and the total free energy F, without
the subtraction of the twist contribution, does not agree with
analytical anchoring energy 1

4K3q3A2Fa.
Before examining further results for qA=3� /16 and 1 in

Fig. 2, we notice that in the previous cases in Fig. 1 twist
deformation is absent when �=90°, or in other words
��0�=90° because anchoring torque of those surfaces with
qA=� /160 or � /16 is small enough. The data presented
there are results for 0���90°. On the other hand, for
qA=3� /16 and 1, ��0� is smaller than 90° when �=90° due
to larger anchoring torque. Therefore the data in Fig. 2 con-
tain results for “overtwisted” configurations with ��90°.
We also note that we have chosen Lz=Lx /2 for qA=1, al-
though Lz=Lx has been used for qA=3� /16 as in the previ-
ous cases. This is because with this choice reliable results
can be extracted for a larger range of ��0�. We have ob-
served that for ��0��40°, the choices Lz=Lx /2 and Lz=Lx

yield the same dependence of F̃a on ��0�.
Now let us investigate the results in Fig. 2 for

qA=3� /16 and 1. It is not surprising that the numerical re-
sults deviate from analytical anchoring energy derived for
qA�1. Nevertheless, the deviations are not large, in particu-
lar in the case of qA=3� /16 and Ks /K3=0.6. Therefore we
can say from our results that the anchoring energies deter-
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FIG. 2. �Color online� Calculated anchoring energy F̃a as a
function ��0� �in degrees� in the case of �a� qA=3� /16�0.589 and
�b� qA=1. The symbols � and � are the results for Ks /K3=0.6 and
Ks /K3=1, respectively. The upper and lower curves are Fa for
Ks /K3=0.6 and Ks /K3=1, respectively.
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FIG. 3. �Color online� Distribution of the azimuth of the director
�n with the variation of z /Lz in the case of qA=3� /16 and
�=90° for �a� Ks /K3=0.6 and �b� Ks /K3=1. Two curves in each
graph specify the region in which �n�z� is expected to reside in a
naive theoretical argument �see text�.
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mined numerically give a semiquantitative agreement with
analytical ones even when qA�1 does not hold.

The quantitative agreement between analytical and nu-
merical anchoring energy, in particular when qA=3� /16 and
Ks /K3=0.6, is somewhat surprising. To find out the reason
for this agreement, we show in Fig. 3 the azimuth of the
director �n	arctan�ny /nx� as a function of z /Lz at all the
grid points in our numerical system with qA=3� /16,
�=90°, and Ks /K3=0.6 or 1. We find that in the bulk
�not in the vicinity of the lower surface� almost uniform twist
is present as has been argued above. We also show in
Fig. 3 the range of �n expected by a naive theoretical argu-
ment: �n should be the superposition of uniform twist
��tw�z�	��0�+ ��−��0��z /Lz� and azimuthal distortions in-
duced by the grooved surface, and therefore is expected to be
in between �tw�z��arcsin�ny

max���0� ,z��. Here ny
max�� ,z� is

the maximum azimuthal distortion calculated in our previous
analytical argument, which is �9�

ny
max��,z� = qA sin �„cos � exp�− qzg1����/g1���

+ �Ks/K3�cot2����cos � exp�− qzg1����/g1���

− g2���exp�− qzg2����/cos ��… .

Figure 3 clearly indicates that the azimuthal angle profile
��n� falls onto the region expected by the above naive theo-
retical argument. This implies that the difference between the
director profiles of numerical calculation and analytical argu-
ment is small, resulting in a relatively good agreement be-
tween the numerical and the analytical anchoring energies.

We also find from Fig. 3 that deviation of the azimuthal
angle profile from that of a uniform twist is smaller when
Ks /K=0.6. This might be the reason why Ks /K=0.6 yields a
better agreement between the numerical and the analytical
anchoring energies.

In conclusion, to elucidate the anchoring properties of a
surface with 1D parallel grooves, we have performed nu-
merical calculations of the energy of a nematic cell made up
of such a grooved surface and a flat surface. When
qA�0.2, with q and A being the wave number and height of
the grooves, the anchoring energy calculated numerically is
in excellent agreement with theory, indicating the applicabil-
ity of our theory of surface anchoring in that range of qA.
For qA�0.6 and 1, we also find a semiquantitative agree-
ment of the numerical anchoring energy with the analytical
one. Considering the assumption of qA�1 in deriving the
analytical anchoring energy, our findings are somewhat sur-
prising in that the analytical anchoring energy can describe
the quantitative as well as qualitative feature of the anchor-
ing of grooved surfaces even when qA�1 does not hold. We
finally notice that a similar calculation can be done also for
two-dimensionally patterned surfaces, which will be pre-
sented in a future work.
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